不等式:修订间差异
来自高中笔记
更多操作
小 →基本不等式 |
|||
| 第29行: | 第29行: | ||
对任意正数 <math>a, b, \frac{a + b}{2} \ge \sqrt{ab}</math>,当且仅当 <math>a = b</math> 时等号成立. | 对任意正数 <math>a, b, \frac{a + b}{2} \ge \sqrt{ab}</math>,当且仅当 <math>a = b</math> 时等号成立. | ||
一般地,对于正数 <math>a,\; b</math>,我们把 <math>\frac{a + b}{2}</math> 称为 <math>a,\; b</math> 的''' | 一般地,对于正数 <math>a,\; b</math>,我们把 <math>\frac{a + b}{2}</math> 称为 <math>a,\; b</math> 的'''算术平均数''',<math>\sqrt{ab}</math> 称为 <math>a,\; b</math> 的'''几何平均数'''. | ||
=== 拓展结论 === | === 拓展结论 === | ||
2024年7月30日 (二) 15:28的版本
我们经常用不等式来研究含有不等关系的问题.
基本事实
如果 , 那么
如果 , 那么
如果 , 那么
反过来也成立. 即
所以,如要证明 , 只需证明 即可.
特殊不等式
基本不等式
把不等式 称为基本不等式.
对任意 ,当且仅当 时等号成立.
对任意正数 ,当且仅当 时等号成立.
一般地,对于正数 ,我们把 称为 的算术平均数, 称为 的几何平均数.
拓展结论
- 已知 都为正数,那么当且仅当 时,和 有最小值 ;
- 如果 是定值 ,那么当且仅当 时,积 有最大值 .
由此可总结出:
当两个正数变量的积或和为定值时,他们的和有最小值或积有最大值
糖水原理
向容器中加入 克水, 克糖得到糖的溶液,
它的质量分数就是 .
再向容器中加入 克糖,
得到质量分数为 的糖溶液.
加入两次糖后的溶液更甜,即后者质量分数更大.
即
.
证明过程
其中,.
作差证明:
所以 .